Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2781: 81-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502445

RESUMO

The placenta is the organ that dictates the reproductive outcome of mammalian pregnancy by supplying nutrients and oxygen to the developing fetus to sustain its normal growth. During early mammalian development, trophoblast cells are the earliest cell type to differentiate with multipotent capacity to generate the trophoblast components of the placenta. The isolation and use of mouse trophoblast stem cells (mTSCs) to model in vitro trophoblast differentiation, in combination with CRISPR/Cas9 genome editing technology, has provided tremendous insight into the molecular mechanisms governing early mouse placentation. By knocking out a specific gene of interest in mTSCs, researchers are shedding light onto the molecular pathways involved in normal placental development and pregnancy disorders associated with abnormal placentation. In this chapter, we provide a detailed protocol for the genetic modification of mTSCs by using CRISPR/Cas9 genome editing system.


Assuntos
Sistemas CRISPR-Cas , Placenta , Gravidez , Feminino , Animais , Camundongos , Camundongos Knockout , Trofoblastos , Diferenciação Celular/genética , Células-Tronco , Mamíferos
2.
Methods Mol Biol ; 2781: 93-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502446

RESUMO

The placenta is a vital organ that regulates nutrient supply to the developing embryo during gestation. In mice, the placenta is composed of trophoblast lineage and mesodermal derivatives, which merge through the chorioallantoic fusion process in a critical event for the progression of placenta development. The trophoblast lineage is derived from self-renewing, multipotent cells known as mouse trophoblast stem cells (mTSCs). These cells are a valuable tool that allows scientists to comprehend the signals regulating major placental cell types' self-renewal and differentiation capacity. Recent advances in CRISPR-Cas9 genome editing applied in mTSCs have provided novel insights into the molecular networks involved in placentation. Here, we present a comprehensive CRISPR activation (CRISPRa) protocol based on the CRISPR/gRNA-directed synergistic activation mediator (SAM) method to overexpress specific target genes in mTSCs.


Assuntos
Placenta , RNA Guia de Sistemas CRISPR-Cas , Gravidez , Feminino , Animais , Camundongos , Trofoblastos , Placentação/fisiologia , Diferenciação Celular/genética , Células-Tronco
3.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987361

RESUMO

Global polystyrene (PS) production has been influenced by the lightness and heat resistance this material offers in different applications, such as construction and packaging. However, population growth and the lack of PS recycling lead to a large waste generation, affecting the environment. Pyrolysis has been recognized as an effective recycling method, converting PS waste into valuable products in the chemical industry. The present work addresses a systematic, bibliometric, and statistical analysis of results carried out from 2015 to 2022, making an extensive critique of the most influential operation parameters in the thermo-catalytic pyrolysis of PS and its waste. The systematic study showed that the conversion of PS into a liquid with high aromatic content (84.75% of styrene) can be achieved by pyrolysis. Discussion of PS as fuel is described compared to commercial fuels. In addition, PS favors the production of liquid fuel when subjected to co-pyrolysis with biomass, improving its properties such as viscosity and energy content. A statistical analysis of the data compilation was also discussed, evaluating the influence of temperature, reactor design, and catalysts on product yield.

4.
Nat Commun ; 14(1): 371, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690623

RESUMO

DNA methylation is a repressive epigenetic modification that is essential for development, exemplified by the embryonic and perinatal lethality observed in mice lacking de novo DNA methyltransferases (DNMTs). Here we characterise the role for DNMT3A, 3B and 3L in gene regulation and development of the mouse placenta. We find that each DNMT establishes unique aspects of the placental methylome through targeting to distinct chromatin features. Loss of Dnmt3b results in de-repression of germline genes in trophoblast lineages and impaired formation of the maternal-foetal interface in the placental labyrinth. Using Sox2-Cre to delete Dnmt3b in the embryo, leaving expression intact in placental cells, the placental phenotype was rescued and, consequently, the embryonic lethality, as Dnmt3b null embryos could now survive to birth. We conclude that de novo DNA methylation by DNMT3B during embryogenesis is principally required to regulate placental development and function, which in turn is critical for embryo survival.


Assuntos
Metilação de DNA , DNA Metiltransferase 3A , Gravidez , Feminino , Animais , Camundongos , Placentação , Placenta/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética
5.
Stem Cell Reports ; 17(10): 2239-2255, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179694

RESUMO

The mechanism governing the transition of human embryonic stem cells (hESCs) toward differentiated cells is only partially understood. To explore this transition, the activity and expression of the ubiquitous phosphatidylinositol 3-kinase (PI3Kα and PI3Kß) were modulated in primed hESCs. The study reports a pathway that dismantles the restraint imposed by the EZH2 polycomb repressor on an essential stemness gene, NODAL, and on transcription factors required to trigger primitive streak formation. The primitive streak is the site where gastrulation begins to give rise to the three embryonic cell layers from which all human tissues derive. The pathway involves a PI3Kß non-catalytic action that controls nuclear/active RAC1 levels, activation of JNK (Jun N-terminal kinase) and nuclear ß-catenin accumulation. ß-Catenin deposition at promoters triggers release of the EZH2 repressor, permitting stemness maintenance (through control of NODAL) and correct differentiation by allowing primitive streak master gene expression. PI3Kß epigenetic control of EZH2/ß-catenin might be modulated to direct stem cell differentiation.


Assuntos
Células-Tronco Embrionárias , Proteína Potenciadora do Homólogo 2 de Zeste , Fosfatidilinositol 3-Quinases , Linha Primitiva , beta Catenina , Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
6.
Dev Cell ; 57(1): 63-79.e8, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34963058

RESUMO

In all eutherian mammals, growth of the fetus is dependent upon a functional placenta, but whether and how the latter adapts to putative fetal signals is currently unknown. Here, we demonstrate, through fetal, endothelial, hematopoietic, and trophoblast-specific genetic manipulations in the mouse, that endothelial and fetus-derived IGF2 is required for the continuous expansion of the feto-placental microvasculature in late pregnancy. The angiocrine effects of IGF2 on placental microvasculature expansion are mediated, in part, through IGF2R and angiopoietin-Tie2/TEK signaling. Additionally, IGF2 exerts IGF2R-ERK1/2-dependent pro-proliferative and angiogenic effects on primary feto-placental endothelial cells ex vivo. Endothelial and fetus-derived IGF2 also plays an important role in trophoblast morphogenesis, acting through Gcm1 and Synb. Thus, our study reveals a direct role for the imprinted Igf2-Igf2r axis on matching placental development to fetal growth and establishes the principle that hormone-like signals from the fetus play important roles in controlling placental microvasculature and trophoblast morphogenesis.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Placenta/irrigação sanguínea , Receptor IGF Tipo 2/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Feminino , Desenvolvimento Fetal , Feto/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/metabolismo , Neovascularização Fisiológica/fisiologia , Placenta/metabolismo , Placenta/fisiologia , Placentação , Gravidez , Receptor IGF Tipo 2/fisiologia , Fatores de Transcrição/genética , Trofoblastos/metabolismo
7.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34651188

RESUMO

Two recently developed models, trophoblast organoids and trophoblast stem cells (TSCs), are useful tools to further the understanding of human placental development. Both differentiate from villous cytotrophoblast (VCT) to either extravillous trophoblast (EVT) or syncytiotrophoblast (SCT). Here, we compare the transcriptomes and miRNA profiles of these models to identify which trophoblast they resemble in vivo. Our findings indicate that TSCs do not readily undergo SCT differentiation and closely resemble cells at the base of the cell columns from where EVT derives. In contrast, organoids are similar to VCT and undergo spontaneous SCT differentiation. A defining feature of human trophoblast is that VCT and SCT are human leukocyte antigen (HLA) null, whereas EVT expresses HLA-C, -G and -E molecules. We find that trophoblast organoids retain these in vivo characteristics. In contrast, TSCs express classical HLA-A and HLA-B molecules, and maintain their expression after EVT differentiation, with upregulation of HLA-G. Furthermore, HLA expression in TSCs differs when grown in 3D rather than in 2D, suggesting that mechanical cues are important. Our results can be used to select the most suitable model for the study of trophoblast development, function and pathology.


Assuntos
Modelos Biológicos , Trofoblastos/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Feminino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Organoides/citologia , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Placentação , Gravidez , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Trofoblastos/metabolismo
8.
Elife ; 102021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34170818

RESUMO

Normal function of the placenta depends on the earliest developmental stages when trophoblast cells differentiate and invade into the endometrium to establish the definitive maternal-fetal interface. Previously, we identified the ubiquitously expressed tumour suppressor BRCA1-associated protein 1 (BAP1) as a central factor of a novel molecular node controlling early mouse placentation. However, functional insights into how BAP1 regulates trophoblast biology are still missing. Using CRISPR/Cas9 knockout and overexpression technology in mouse trophoblast stem cells, here we demonstrate that the downregulation of BAP1 protein is essential to trigger epithelial-mesenchymal transition (EMT) during trophoblast differentiation associated with a gain of invasiveness. Moreover, we show that the function of BAP1 in suppressing EMT progression is dependent on the binding of BAP1 to additional sex comb-like (ASXL1/2) proteins to form the polycomb repressive deubiquitinase (PR-DUB) complex. Finally, both endogenous expression patterns and BAP1 overexpression experiments in human trophoblast stem cells suggest that the molecular function of BAP1 in regulating trophoblast differentiation and EMT progression is conserved in mice and humans. Our results reveal that the physiological modulation of BAP1 determines the invasive properties of the trophoblast, delineating a new role of the BAP1 PR-DUB complex in regulating early placentation.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas Repressoras/metabolismo , Trofoblastos/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
9.
Cell Mol Life Sci ; 78(11): 4993-5014, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33884443

RESUMO

Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal-fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5-E18.5) was assessed. Prominent expression was observed for Trpv2, Trpm6, and Trpm7. Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.


Assuntos
Placenta/metabolismo , Placentação/genética , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Gravidez , Células-Tronco/citologia , Células-Tronco/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/genética , Trofoblastos/citologia , Trofoblastos/metabolismo
10.
Dev Cell ; 54(3): 295-296, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32781021

RESUMO

A fully functional placenta is critical for a successful pregnancy. In this issue of Developmental Cell, Singh et al. reveal that excessive placental DNA damage in murine models for Cornelia de Lange syndrome results in an inefficient and senescent placenta that impairs embryonic development.


Assuntos
Síndrome de Cornélia de Lange , Animais , Dano ao DNA , Feminino , Camundongos , Placenta , Gravidez
11.
Development ; 147(6)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184271

RESUMO

Reproductive decline in older female mice can be attributed to a failure of the uterus to decidualise in response to steroid hormones. Here, we show that normal decidualisation is associated with significant epigenetic changes. Notably, we identify a cohort of differentially methylated regions (DMRs), most of which gain DNA methylation between the early and late stages of decidualisation. These DMRs are enriched at progesterone-responsive gene loci that are essential for reproductive function. In female mice nearing the end of their reproductive lifespan, DNA methylation fidelity is lost at a number of CpG islands (CGIs) resulting in CGI hypermethylation at key decidualisation genes. Importantly, this hypermethylated state correlates with the failure of the corresponding genes to become transcriptionally upregulated during the implantation window. Thus, age-associated DNA methylation changes may underlie the decidualisation defects that are a common occurrence in older females. Alterations to the epigenome of uterine cells may therefore contribute significantly to the reproductive decline associated with advanced maternal age.


Assuntos
Envelhecimento/genética , Implantação do Embrião/genética , Epigênese Genética/fisiologia , Reprodução/fisiologia , Animais , Células Cultivadas , Ilhas de CpG/genética , Metilação de DNA/fisiologia , Decídua/fisiologia , Embrião de Mamíferos , Feminino , Masculino , Idade Materna , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Reprodução/genética
12.
Elife ; 82019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31241463

RESUMO

Studies suggest that placental nutrient supply adapts according to fetal demands. However, signaling events underlying placental adaptations remain unknown. Here we demonstrate that phosphoinositide 3-kinase p110α in the fetus and the trophoblast interplay to regulate placental nutrient supply and fetal growth. Complete loss of fetal p110α caused embryonic death, whilst heterozygous loss resulted in fetal growth restriction and impaired placental formation and nutrient transport. Loss of trophoblast p110α resulted in viable fetuses, abnormal placental development and a failure of the placenta to transport sufficient nutrients to match fetal demands for growth. Using RNA-seq we identified genes downstream of p110α in the trophoblast that are important in adapting placental phenotype. Using CRISPR/Cas9 we showed loss of p110α differentially affects gene expression in trophoblast and embryonic stem cells. Our findings reveal important, but distinct roles for p110α in the different compartments of the conceptus, which control fetal resource acquisition and growth.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Embrionárias/enzimologia , Metabolismo Energético , Desenvolvimento Fetal , Placentação , Trofoblastos/enzimologia , Animais , Feminino , Feto , Camundongos , Gravidez , Transdução de Sinais
13.
Artigo em Inglês | MEDLINE | ID: mdl-30319550

RESUMO

The placenta is the chief regulator of nutrient supply to the growing embryo during gestation. As such, adequate placental function is instrumental for developmental progression throughout intrauterine development. One of the most common complications during pregnancy is insufficient growth of the fetus, a problem termed intrauterine growth restriction (IUGR) that is most frequently rooted in a malfunctional placenta. Together with conventional gene targeting approaches, recent advances in screening mouse mutants for placental defects, combined with the ability to rapidly induce mutations in vitro and in vivo by CRISPR-Cas9 technology, has provided new insights into the contribution of the genome to normal placental development. Most importantly, these data have demonstrated that far more genes are required for normal placentation than previously appreciated. Here, we provide a summary of common types of placental defects in established mouse mutants, which will help us gain a better understanding of the genes impacting on human placentation. Based on a recent mouse mutant screen, we then provide examples on how these data can be mined to identify novel molecular hubs that may be critical for placental development. Given the close association between placental defects and abnormal cardiovascular and brain development, these functional nodes may also shed light onto the etiology of birth defects that co-occur with placental malformations. Taken together, recent insights into the regulation of mouse placental development have opened up new avenues for research that will promote the study of human pregnancy conditions, notably those based on defects in placentation that underlie the most common pregnancy pathologies such as IUGR and pre-eclampsia.

14.
Stem Cell Reports ; 10(4): 1355-1368, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29576538

RESUMO

The ten-eleven translocation (TET) proteins are well known for their role in maintaining naive pluripotency of embryonic stem cells. Here, we demonstrate that, jointly, TET1 and TET2 also safeguard the self-renewal potential of trophoblast stem cells (TSCs) and have partially redundant roles in maintaining the epithelial integrity of TSCs. For the more abundantly expressed TET1, we show that this is achieved by binding to critical epithelial genes, notably E-cadherin, which becomes hyper-methylated and downregulated in the absence of TET1. The epithelial-to-mesenchymal transition phenotype of mutant TSCs is accompanied by centrosome duplication and separation defects. Moreover, we identify a role of TET1 in maintaining cyclin B1 stability, thereby acting as facilitator of mitotic cell-cycle progression. As a result, Tet1/2 mutant TSCs are prone to undergo endoreduplicative cell cycles leading to the formation of polyploid trophoblast giant cells. Taken together, our data reveal essential functions of TET proteins in the trophoblast lineage.


Assuntos
Ciclo Celular , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Trofoblastos/citologia , Animais , Linhagem Celular , Forma do Núcleo Celular , Centrossomo/metabolismo , Ciclina B1/metabolismo , Endorreduplicação , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Poliploidia , Estabilidade Proteica
15.
Nature ; 555(7697): 463-468, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29539633

RESUMO

Large-scale phenotyping efforts have demonstrated that approximately 25-30% of mouse gene knockouts cause intrauterine lethality. Analysis of these mutants has largely focused on the embryo and not the placenta, despite the crucial role of this extraembryonic organ for developmental progression. Here we screened 103 embryonic lethal and sub-viable mouse knockout lines from the Deciphering the Mechanisms of Developmental Disorders program for placental phenotypes. We found that 68% of knockout lines that are lethal at or after mid-gestation exhibited placental dysmorphologies. Early lethality (embryonic days 9.5-14.5) is almost always associated with severe placental malformations. Placental defects correlate strongly with abnormal brain, heart and vascular development. Analysis of mutant trophoblast stem cells and conditional knockouts suggests that a considerable number of factors that cause embryonic lethality when ablated have primary gene function in trophoblast cells. Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes that govern placenta formation.


Assuntos
Perda do Embrião/genética , Perda do Embrião/patologia , Mutação , Placenta/patologia , Placentação/genética , Animais , Feminino , Camundongos , Camundongos Knockout , Gravidez , Células-Tronco/metabolismo , Células-Tronco/patologia , Trofoblastos/metabolismo , Trofoblastos/patologia
16.
Nat Commun ; 8(1): 352, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874785

RESUMO

Mammalian reproductive performance declines rapidly with advanced maternal age. This effect is largely attributed to the exponential increase in chromosome segregation errors in the oocyte with age. Yet many pregnancy complications and birth defects that become more frequent in older mothers, in both humans and mice, occur in the absence of karyotypic abnormalities. Here, we report that abnormal embryonic development in aged female mice is associated with severe placentation defects, which result from major deficits in the decidualisation response of the uterine stroma. This problem is rooted in a blunted hormonal responsiveness of the ageing uterus. Importantly, a young uterine environment can restore normal placental as well as embryonic development. Our data highlight the pivotal, albeit under-appreciated, impact of maternal age on uterine adaptability to pregnancy as major contributor to the decline in reproductive success in older females.Advanced maternal age has been associated with lower reproductive success and higher risk of pregnancy complications. Here the authors show that maternal ageing-related embryonic abnormalities in mouse are caused by decidualisation and placentation defects that can be rescued by transferring the embryo from an old to a young uterus.


Assuntos
Envelhecimento/fisiologia , Decídua/fisiopatologia , Placenta/fisiopatologia , Reprodução/fisiologia , Fatores Etários , Envelhecimento/genética , Animais , Células Cultivadas , Decídua/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Idade Materna , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placentação/genética , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/fisiopatologia , Reprodução/genética , Útero/metabolismo , Útero/fisiopatologia
17.
Nat Commun ; 7: 12846, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27667448

RESUMO

Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene expression profiles from Gene Expression Omnibus (GEO). Through a massive open online course on Coursera, over 70 participants from over 25 countries identify and annotate 2,460 single-gene perturbation signatures, 839 disease versus normal signatures, and 906 drug perturbation signatures. All these signatures are unique and are manually validated for quality. Global analysis of these signatures confirms known associations and identifies novel associations between genes, diseases and drugs. The manually curated signatures are used as a training set to develop classifiers for extracting similar signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization.

18.
Dev Cell ; 36(2): 152-63, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26812015

RESUMO

Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Metilação de DNA , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Placenta/embriologia , Trofoblastos/citologia , Animais , Epigênese Genética/genética , Feminino , Impressão Genômica/genética , Camundongos Transgênicos , Placenta/metabolismo , Gravidez
19.
Mol Cell Biol ; 35(1): 249-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348717

RESUMO

The nuclear envelope (NE) forms a barrier between the nucleus and the cytosol that preserves genomic integrity. The nuclear lamina and nuclear pore complexes (NPCs) are NE components that regulate nuclear events through interaction with other proteins and DNA. Defects in the nuclear lamina are associated with the development of laminopathies. As cells depleted of phosphoinositide 3-kinase beta (PI3Kß) showed an aberrant nuclear morphology, we studied the contribution of PI3Kß to maintenance of NE integrity. pik3cb depletion reduced the nuclear membrane tension, triggered formation of areas of lipid bilayer/lamina discontinuity, and impaired NPC assembly. We show that one mechanism for PI3Kß regulation of NE/NPC integrity is its association with RCC1 (regulator of chromosome condensation 1), the activator of nuclear Ran GTPase. PI3Kß controls RCC1 binding to chromatin and, in turn, Ran activation. These findings suggest that PI3Kß regulates the nuclear envelope through upstream regulation of RCC1 and Ran.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Animais , Ciclo Celular , Cromatina/metabolismo , Classe I de Fosfatidilinositol 3-Quinases , Fibroblastos/metabolismo , Células HEK293 , Humanos , Bicamadas Lipídicas , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Células NIH 3T3 , Ligação Proteica
20.
Biol Open ; 3(10): 924-36, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25217619

RESUMO

The acquisition of invasiveness is characteristic of tumor progression. Numerous genetic changes are associated with metastasis, but the mechanism by which a cell becomes invasive remains unclear. Expression of p85ß, a regulatory subunit of phosphoinositide-3-kinase, markedly increases in advanced carcinoma, but its mode of action is unknown. We postulated that p85ß might facilitate cell invasion. We show that p85ß localized at cell adhesions in complex with focal adhesion kinase and enhanced stability and maturation of cell adhesions. In addition, p85ß induced development at cell adhesions of an F-actin core that extended several microns into the cell z-axis resembling the skeleton of invadopodia. p85ß lead to F-actin polymerization at cell adhesions by recruiting active Cdc42/Rac at these structures. In accordance with p85ß function in invadopodium-like formation, p85ß levels increased in metastatic melanoma and p85ß depletion reduced invadopodium formation and invasion. These results show that p85ß enhances invasion by inducing cell adhesion development into invadopodia-like structures explaining the metastatic potential of tumors with increased p85ß levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...